If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+t-10=0
a = 4; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·4·(-10)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*4}=\frac{-1-\sqrt{161}}{8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*4}=\frac{-1+\sqrt{161}}{8} $
| -40+6y=-2 | | 4+3(y-8)=8y | | 5x+35=5x+15 | | 5y-15=70 | | 3y+6=4y-8 | | 5x-15=5x+15 | | 7e+4(6-e)=15 | | 4x^2+3-6=0 | | 40+6y=-2 | | ((24+y)/4)+(y/2)=7 | | (58-y)=(10+5y) | | 2/3x+15=17. | | 24=2x=14x-24 | | -5(x-7)=1+3x | | -5(x-7=1+3x | | 10x+4(x-3)=16 | | b+23=160 | | 9/x=18/12 | | 14v−10v=16 | | 4,8•10•10•10+0,5y=10•10•10•10 | | 12+2y=9 | | 3x+6/5=x-1/3 | | d+158=570 | | 64=8/11(n-10) | | −7s−63=-56 | | 45=2x+57 | | 3x+3=21# | | -23(b-968)=-414 | | 0•5x+9•6=3 | | 2x+5-x=10-(2x+5) | | 11x+21=3x+125 | | 6−6b=-42 |